
VCELL: A 3D Real-time Visual Simulation in Support of Combat
Ahmed Sayed Ahmed, Mohammad Moallemi, Gabriel Wainer, and Samy Mahmoud

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario, Canada K1S 5B6

{asahmed, moallemi, gwainer, and mahmoud}@sce.carleton.ca

Keywords: Cell-DEVS, ABD, CAS, 3D Real-time Visual
Simulation, Collaborative Modeling

Abstract

We present the development of a 3D real-time visual Cel-
lular Agent model (VCELL). VCELL is used for simulating
land combat and is collaboratively modeled using a cellular
agent model based on the Cell-DEVS formalism and an ad-
vanced immersive environment based on a 3D real-time vi-
sual simulation. VCELL is used to enhance and improve the
random selection caused by movement algorithms of Agent-
based distillation (ABD). The model includes a highly mod-
ular collection of software packages designed to facilitate
the development of device-independent simulation for land
combat. The immersive environment is used to visualize the
land combat. The simulation results of the Cell-DEVS agent
model are visualized dynamically in real-time. The goal is to
show how to integrate cellular modeling in a real-time plat-
form and 3D real-time visualization as a collaboration mech-
anism to enhance movement algorithms in land combat. The
3D real-time visualization allows for supervisory control of
the land combat activities.

1. INTRODUCTION
Land combat warfare has received increasing attention in

recent years and several research works have been developed
and proposed for this purpose. It has been shown that war-
fare can be described by nonlinear behaviors [1–3]. Com-
bat model can be presented as a complex adaptive system
(CAS) [2], where the global behavior depends on local in-
teraction of agents. Complex adaptive systems can be con-
sidered as a special case of complex system [4–7] i.e, a dy-
namical system composed of many nonlinearly interacting
agents. Agent-based simulations can be deployed into mili-
tary operations, which are usually known as Agent-based dis-
tillation (ABD) or agent-based simulation. These agent-based
distillations (ABD) are low-resolution abstract models, used
to explore different aspects of land combat operations that
will help decision makers to quickly investigate different sce-
narios in a real battle condition. An agent-based simulation
is designed by simple behavioral rules. A number of agent-

based simulation applications for land combat are surveyed
in [1–3, 8–14]. Agent-based simulation toolkits use a func-
tion for the agent’s movement in the combat battlefield space
based on their movement algorithms.

Since land combat movement algorithms can be distributed
over both time and space, land combat simulations should
take into consideration the system evolution in both time and
space. In this paper, we present a collaborative land com-
bat model based on the Cell-DEVS formalism [15] and 3D
real-time visualization to develop new classes of land combat
movement algorithms.

We present a hybrid model to solve the randomization
problem caused by a random moving selection between the
cells in tie, which is produced by the movement algorithms
of most ABD toolkits. We propose to solve this problem by
collaboration between an agent based on Cell-DEVS formal-
ism [15] and a visual Agent simulation based on a 3D real-
time visualization simulation in real-time. The visual agent
simulation allows us to visualize the land combat simula-
tion scenarios in a 3D scene. We also propose to reduce the
programming time consumed to develop or modify the sce-
nario tactics for combat in real-time visual simulation by us-
ing Cell-DEVS, which allows us to use simple rules to write
the different scenarios.

2. RELATED WORK
Various development efforts for combat have been de-

signed based on agent-based simulation. One of such ef-
forts is the Irreducible Semi-Autonomous Adaptive Combat
(ISAAC) [1, 2], and its extension the Enhanced ISAAC Neu-
ral Simulation Toolkit (EINSTein) [1, 8] designed on the US
Marine Corps Combat Development Command. BactoWars
was developed by Land Operations [9]. The Map Aware Non-
uniform Automata (MANA) [3, 10] was provided by New
Zealandś Defence Technology Agency. The Conceptual Re-
search Oriented Combat Agent Distillation Implemented in
the Littoral Environment (CROCADILE) [11] and the War-
fare Intelligent System for Dynamic Optimization of Mis-
sions (WISDOM) [12–14] developed at the University of
New South Wales at the Australian Defence Force Academy.
All of these development tools use a function for the agent’s
movement in the space. A research introduced in [16] ex-



amined the movement algorithms of MANA . Movement al-
gorithm of agents within the EINSTein and MANA ABDs
was modified by Grieger [16]. In such combat simulations,
an agent always moves to the cell with the maximum weight.
If a tie happens, the agent selects randomly between the cells
in tie. Due to this randomization, the stability of the solution
may be affected and the outputs of this combat simulation are
not guaranteed [17].

Our work presents a collaborative 3D real-time visual Cel-
lular Agent model (VCELL) and a Cellular Agent simulation
in real-time. The agents are divided into two teams; the blue
team in the 3D visualization agent sub-model, and red team in
the Cell-DEVS agent sub-model. These sub-models collabo-
rate via a network connection. Our work differs from previous
researches as follows:
• This work incorporates two components: a Cell-DEVS

agent simulation and a 3D visualization agent simula-
tion. This component-oriented approach provides model
reusability and interoperability, allowing for integration
or replacement of any of the two components.

• It uses a VCELL model for removing the random move-
ment problem in the blue team providing 3D visualiza-
tion agent that gets the real position of agents in the
combat. This guarantees the combat simulation output
for the blue team.

• The 3D visualization agent simulation is an on-demand
data source for the combat scenario. Real fighters can
be invoked in the 3D visualization agent simulation to
update the agent simulation data with a real situation.

2.1. Agent-Based Distillation (ABD)
The Lanchester Equations were considered to model and

hypothesize combat attrition by defense analysts [1, 2]. The
Lanchester Equations were presented by Lanchester in 1916
[18] as a set of linear dynamic equations that address attri-
tion as a continuous function over time. In Lanchester Equa-
tions, Combat is modeled as a deterministic process that need
an attrition-rate coefficient. Lanchester equations are easy to
apply. Models based on mathematical equations and physical
description of combat can only provide an ideal model of mil-
itary operations that is too abstract and far from realistic. The
shortcomings of the Lanchester equations have been listed
and analyzed in [1, 3, 8, 11]. Research results in [1–3] shows
that warfare can be considered as nonlinear behavior. Com-
bat is considered as a complex adaptive system (CAS) [2]. A
Multi-agent system (MAS) is a platform for studying CAS.
The combatants are modeled as agents, usually with a set
of pre-defined characteristics. These agents adapt, evolve and
co-evolve with their environment [3,19]. This view of combat
allows researchers to use agent-based simulations on military
operations. The field is usually known as ABD or agent-based
simulation (ABS). ABD emphasizes the concept of incorpo-

ration of agents in the environment [20]. Defense analysts
have studied different behaviors of warfare based on ABD.
Simulation is used to study and analyze the dynamics and be-
haviors of the system, which provide defense analysts with a
useful tool for helping them in making decisions.

By modeling an individual constituent of a CAS as an
agent, we are able to simulate a real world system by an arti-
ficial world populated by interacting processes. This is partic-
ularly effective to represent real world systems that are com-
posed of a number of nonlinear interacting parts with a large
space of complex decisions and/or behaviors to choose from
such as those situations in real combat [2].

2.2. Cell-DEVS
Among the existing simulation techniques, DEVS (Dis-

crete Event System Specification) formalism [21] provides a
discrete-event M&S approach which allows construction of
hierarchical models in a modular manner. DEVS is an in-
creasingly accepted framework for understanding and sup-
porting the activities of modeling and simulation. A real sys-
tem modeled with DEVS is described as a composite of sub-
models, each of them being behavioral (atomic) or structural
(coupled).

A cellular automaton is a discrete model which is com-
posed of a network of cells that each cell has a finite num-
ber of states [22]. The state of each of the cells in time t is
a function of states of its predefined neighbor cells in time
t-1. Cell-DEVS [15] has extended DEVS, allowing the im-
plementation of cellular models with explicit timing delays.
A Cell-DEVS model is a lattice of cells, where each cell is a
DEVS atomic component, holding state variables and a com-
puting apparatus, which is in charge of updating the cell state
according to a local rule-base. This is done using the current
cell state and those of a finite set of nearby cells (called its
neighborhood). Cell-DEVS improves execution performance
of cellular models by using a discrete-event approach. It also
enhances the cell’s timing definition by making it more ex-
pressive. Each cell is defined as a DEVS atomic component,
and it can be later integrated to a coupled component rep-
resenting the cell space. Cell-DEVS atomic components are
informally defined as in Figure 1.

Figure 1. Description of a Cell-DEVS atomic component



Each cell uses N inputs to compute its next state. These
inputs, which are received through the model’s interface, ac-
tivate a local computing function (τ). A delay (d) can be asso-
ciated with each cell. The state (s) changes can be transmitted
to other models, but only after the consumption of this de-
lay. Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells intercon-
nected by a neighborhood relationship.

A Cell-DEVS coupled model is informally presented in
Figure 2. A coupled Cell-DEVS is composed of an array of
atomic cells, with given size and dimensions. Each cell is con-
nected to its neighborhood through standard DEVS input/out-
put ports. Border cells have a different behavior due to their
particular locations, which result in a non-uniform neighbor-
hood.

Figure 2. Description of a Cell-DEVS coupled component

CD++ [23] is a modeling software tool to implement the
DEVS and Cell-DEVS models. DEVS Atomic models can
be programmed and incorporated into a class hierarchy pro-
grammed in C++. Coupled models can be defined using a
built-in specification language. Cellular models are built fol-
lowing the formal specifications of the Cell-DEVS formal-
ism, and a built-in language is provided to describe declare
the model and the associated rules. CD++ is built as a class
hierarchy of models, where the user-defined model classes are
united with the main simulation core classes to make a full hi-
erarchy of simulation entities. CD++ includes an interpreter
for Cell-DEVS models, which allows for automatic genera-
tion of atomic cells and allows for definition of the cell state
change rules. The language is based on Cell-DEVS formal-
ism, in which the model specifications include the size and di-
mension of the cell space, the shape of the neighborhood and
borders can be defined. The cell’s local computing function is
defined using a set of rules with the form POSTCONDITION
DELAY PRECONDITION. This syntax indicates that, when
the PRECONDITION is satisfied, the state of the cell changes
to the designated POSTCONDITION, whose computed value
will be transmitted to other components after consuming the
DELAY. If the precondition is false, the next rule in the list is
evaluated until a rule is satisfied or there are no more rules.

2.3. 3D Visual Simulation
The rapid expanding technology in computer processing,

storage, communications, and display capability has resulted
in a rapid growth of software modeling and visual simulation
[24]. Interactive 3D simulation is used in combat simulation,
where there is a necessity during peacetime to train soldiers
in order to gain successful results in wartime missions [25].
Training simulation systems can be treated as games, hence
a large effort has been devoted recently, on learning and skill
improvement of the trainees [26]. Digital Game-Based Learn-
ing [27] -as today and future learning style- is deployed as a
method of learning and training, because it is motivating, and
it is effective when used in a correct way

3. THE VISUAL CELL-DEVS AGENT
(VCELL) ARCHITECTURE

The Visual CELL-DEVS Agent (VCELL), as shown in
Figure 3, is composed of two main subsystems:

1. The CellAgent sub-model which is implemented using
a Cell-DEVS model running in real-time.

2. The 3D real-time visual simulation (RTV)sub-model
which is implemented using Vega Prime and OpenGL
[28]

Figure 3. The Visual CELL-DEVS Agent (VCELL) Archi-
tecture

Each sub-model runs on a different machine, communi-
cating using messages sent over a network. The CellAgent
sub-model and the 3D real-time visualization sub-model run
in real-time and they communicate via messages transferred
through a network infrastructure. VCELL is a multi-agent
simulation combat system which facilitates the analysis and
understanding of land combat, and 3D real time visualization



simulation for tactics in land combat. By using VCELL, not
only the analysts can understand the overall shape and dy-
namics of a battle and know the output of an operation but
also combatant could be trained in the 3D visual real time
simulation system. An agent in VCELL is characterized by
some properties such as: capabilities, movements, communi-
cations and health. Agents can communicate by exchanging
messages. The health can be defined as the level of energy
for an agent. The level of energy of agents are defined by
users. When an agent is attacked by the opponent agent type,
its health depends on the number of the neighborhood agents
and their health strength. Users can import different 3D ter-
rain types in the real time visual model. The type of terrain
affects the agent’s movements.

The agent’s movement depends on five different weights;
agent healthy friend, agent injured friend, agent healthy op-
ponent, agent injured opponent, and the flag. The movement
is calculated at each simulation time step for each agent. The
agent can move to another cell or decide to stay at the same
cell. Each cell in the space cannot be occupied by more than
one agent at a time. The decision making used by each agent
to decide the direction to move, depends on the agent’s per-
sonalities in the movement algorithm. The movement algo-
rithms used in VCELL is the same than in EINSTein and
MANA, but VCELL is not restricted to these algorithms only
as we can apply different movement algorithms. The Move-
ment Algorithm of EINSTein uses equation (1) to compute
the penalty for the next location [1, 8]:

Znew =

(
WE

E ∗RS
√

2

E

∑
i=1

Di,new

)
+WF

(
DF,new

DF,old

)
(1)

where
RS Sensor range of agent about to move;
E Number of enemy entities within sensor range;
WE Weighting towards enemy agents;
Di,new Distance to the ith enemy from the new location;
WF Weighting towards the flag;
DF,new Distance to the flag from the new location;
DF,old Distance to the flag from the current location.
The Movement Algorithm of MANA uses equation (2) to

compute the penalty for the next location [3, 10]:

Znew =

(
WE

100∗E

)(
E

∑
i=1

Di,new +(100−Di,old)

100

)

+

(
WF

100

)(
DF,new +(100−DF,old)

100

)
(2)

where

E Number of enemy entities within sensor range;
WE Weighting towards enemy agents;
Di,new Distance to the ith enemy from the new location;
Di,old Distance to the ith enemy from the current location
WF Weighting towards the flag;
DF,new Distance to the flag from the new location;
DF,old Distance to the flag from the current location.
Agents are encouraged to move closer to the opponent

agent. The agent will always move to the cell with maximum
weight. There is no tie in the real-time simulation sub-model,
but in the Cell-DEVS simulation sub-model, the agent selects
a cell randomly between the cells in the tie. This kind of ran-
domization may affect the stability of the solution in the en-
emy section only, however it is not a serious problem as the
enemy section is based on our assumptions.

4. CELL-DEVS AGENT SUB-MODEL
4.1. Real-time Cell-DEVS

The time advances in the DEVS and Cell-DEVS models
based on the availability of the events. Thus, the simulation
runs in virtual-time in which, after servicing every event, the
simulation time advances to the next scheduled event time.
To visualize the agent model, we need to run the agent model
simulation in real-time, so that the events can be transferred
to the visual engine, resulting in a real-life visualization of the
battlefield. CD++ is designed and implemented based on the
DEVS abstract simulation mechanism [21]. A Root Coordi-
nator object acts as a coordinator with the top-coupled com-
ponent in a CD++ model, which is responsible to advance the
time to the next event time and also send and receive the I/O
of the DEVS model.

We modified the Root Coordinator event scheduler func-
tion to work in real-time, in which the events are served at
the time they are serviced and the time advances based on the
wall clock time. We have added two new features to the CD++
simulator, which make CD++ capable of receiving DEVS in-
puts from the network and injecting them to the model, and
at the same time sending outputs of the DEVS model to the
network. A separate thread was added to the CD++ software
structure to make it capable of listening to the network inputs
without interrupting the main execution sequence. The input
thread executes an added function of the Root Coordinator,
which creates a network socket and listens to the network in a
blocking mode. As soon as a network packet is received, the
content of the packet is extracted and saved in the input bag
of the Root Coordinator, which will service the input.

In order to send inputs to any specific atomic cell, we
modified the CD++ MainSimulator post registration function,
which is responsible to create the DEVS ports defined in the
model file. In the modified version, the MainSimulator cre-
ates a default input port for each atomic cell (Figure 4). These
ports are used later by the Root Coordinator to inject inputs



to the specific cell based on the coordinates indicated in the
network message. Once an input is received, The Root Coor-
dinator sends an input message to the input port of the Top
coordinator, which is connected to the specific cell that is the
destination of the message.

Figure 4. An example Cell-DEVS model structure and in-
terfaces

To submit the changes of the cell value changes, we have
added a function to the Root Coordinator, that extracts the
outputs of atomic cells from the Y messages (the output car-
rying message defined in DEVS abstract simulation algo-
rithm) and sends them to the network.

4.2. Global Message Structure
The collaboration of the sub-models is based on a global

message structure transferred over a network infrastructure.
The network struct contains the following five data fields:

1. msg id: an integer data type used to decode the type
of the message and the value of the next fields in the
message. There are generally three types of messages:
• The dimension message carries the size of the cell-

space from the CellAgent sub-model to the 3D
real-time visualization sub-model at the start of the
execution.

• The cell-space update message carries the cell
value changes during the execution from the Cel-
lAgent sub-model to the 3D real-time visualization
sub-model. It also carries the initial coordinates
and personalities of the blue agent from the 3D
real-time visualization sub-model to the CellAgent
sub-model and the initial coordinates blue agent’s
flag from the 3D real-time visualization sub-model
to the CellAgent sub-model.

• The visualization agent update message carries the
visualization changes during the execution from
the 3D real-time visualization sub-model to the
CellAgent sub-model. It also carries the initial co-
ordinates of the red agent’s flag from the CellA-
gent sub-model to the 3D real-time visualization
sub-model and the initial coordinates blue agent’s

flag from the 3D real-time visualization sub-model
to the CellAgent sub-model.

2. x: used to carry the horizontal axis value (the horizontal
dimension or the horizontal coordinate).

3. y: used to carry the vertical axis value (the vertical di-
mension or the vertical coordinate).

4. z: used to carry the layer axis value (the layer dimen-
sion or the layer coordinate).

5. v: used to carry the value of the cell(x,y,z).
These messages are embedded in a UDP packet, and trans-

ferred during the execution of the model through the network.
The design of the system is such that the number of messages
transferred through the network is a low as possible thus pre-
venting delay in the message transfer.

4.3. Cell-DEVS Agent Definition Model
The basic element of our CellAgent sub-model is a VCELL

Agent (VCELLA), which represents a primitive combat unit
(tank, transport vehicle, etc.). The combat battlefield is repre-
sented in the CellAgent sub-model as a two-dimensional cell
space as shown in Figure 5. Each cell in the space can be oc-
cupied by red agent of VCELLA. Each red agent can move to
the next cell in the movement range or stay in the same cell.
The sensor range is the area that is defined for each red agent
to get the available number of friendly and enemy agents and
their personalities values. The user defines the dimension of
the combat battlefield and the initial state of red VCELLA
agents at diagonally opposite corner of the red agents in the
VisualAgent sub-model. Red flag is also positioned in the red
VCELLA’s corner. The goal for the red VCELLA is to reach
the blue flag successfully. The Combat CellAgent sub-model
is defined using the modified CD++ version descried in Sub-
section 4.1.

Figure 5. Movement and sensor range of VCELLA

Figure 6 illustrates the CellAgent sub-model in CD++ with
the specifications and the network interface. The CellAgent
sub-model is composed of CD++ O/P Driver Component
and CD++ Input thread. The CD++ O/P Driver Component



sends the battlefield dimensions to start up the VisualAgent
sub-model. Then it sends the initial and updated values of red
agents, their weights, and the red flag position in real-time to
the VisualAgent sub-model. The CD++ Input thread receives
the initial and updated values of blue agents, their weights,
and the blue flag position in real-time from the VisualAgent
sub-model. Then it invoked these values in the cell space of
the model.

Figure 6. CellAgent model implementation in CD++

The model file of CellAgent sub-model reads the initial-
ization data from a CD++ associated value file. The value file
has the initial values of the red agents, their weights, and the
red flag position. The dimensions of the battlefield is defined
in the model file. The model file is composed of six layers.
The first layer contains the red agents, the second layer has
their weights, and the third one contains the red flag position,
which gets its initial values from the value file. The other
three layers are allocated to the blue agents, their weights,
and the blue flag position, which get its values from the 3D
real-time simulation sub-model.

The personality of VCELLA can be defined by the weight
towards enemy agents and the weight towards the enemy
flag which specify how VCELLA interacts with informa-

tion within its sensor range. Each VCELLA has one of three
states: alive, injured, or killed. The health state, 0 ≤ H ≤ 1,
is the measure of an agent’s health. The agent’s health can be
defined as shown in equation (3):

H = H ∗σ

(
1+F−E

F

)
(3)

where
F Number of friendly entities within sensor range;
E Number of enemy entities within sensor range;
σ function of x as defined in (4);

σ(x) =


1, 1 < x
x, 0≤ x ≤ 1
0, otherwise

, (4)

As discussed earlier, the CellAgent sub-model can interact
with the 3D visualization in real-time. We have also added a
generic interface to the simulation engine enabling it to inter-
act with the external environment (e.g. network). The simu-
lator sends the dimensions of the cell space at the start of the
simulation, submits any cell updates, and at the same time re-
ceives input to the cellular model using the message structure
discussed in Subsection 4.2.

5. 3D REAL-TIME VISUALIZATION (RTV)
3D Visualization of combat can provide a number of bene-

fits. First, it provides decision makers with an interactive envi-
ronment to verify the accuracy of these models by comparing
the results of an actual combat with the output of a simulated
version. Once the model is validated, it can then be used to
predict the behavior of an existing combat. Displaying these
predictions in a visually informative manner allows the deci-
sion makers to understand a view of the situations and their
soldiers and warfare in order to make decisions that are more
effective. Furthermore, interactive simulation along with the
3D visualization allows trainers to apply different combat tac-
tics and enemy behaviors. While real training would be risky
and costly to perform, these risks can be minimized by sim-
ulating untested approaches first. 3D visual interfaces pro-
vide a more understanding of interaction. Additionally, high-
fidelity graphics enables an observer in better comparing a
simulated combat to a traditional 2D visualization.

5.1. Visualization sub-model Description
The 3D real-time visualization is used to visualize the sim-

ulation output results of the CellAgent sub-model and also
to implement a collaborative model which shares its com-
ponents on two different simulation engines. The visualiza-
tion renders the red agents, and the creation of the blue



Figure 7. 3D Real-time Visualization view

agents and their characteristics based on their movement al-
gorithm and their personalities. The 3D real-time visualiza-
tion model is implemented using Vega Prime and OpenGL
[14]. Vega Prime is a high-performance software environ-
ment and toolkit for real-time simulation and virtual reality
applications. It serves as an application programmer interface
(API) consisting of a graphical user interface called LynX
Prime and Vega Prime libraries and C++ callable functions.

In the 3D real-time visualization sub-model, the combat
can be seen in a 3D view for both red and blue agents. The
blue agent personality calculations and position updates are
done in the RTV sub-model based on the received data of
the red agents. The red agent’s personalities and positions are
received from the CellAgent sub-model in real-time. The Cel-
lAgent sub-model receives the blue agent’s personalities and
positions from the RTV in real-time.

The 3D scenes are rendered using 3D Openflight models.
The terrain model consists of trees, buildings, roads, etc. The
agents are represented by a 3D Tank model. We can control
the environment effects and the time of the day in the 3D
scene visualization. A 3D scene is shown in a window that
is divided into two channels; one for perspective view of 3D
scene (on the left), and the other for the orthographical view
of the 3D scene which acts as 2D Map of the area (on the
right) as shown in Figure 7.

On the perspective view of the first channel, a 3D model
for each agent (3d tank object) is displayed in the 3D scene.
The 3D scene is observed using a fixed camera. The observer
view can be changed to five positions: back, front, left side,
right side, or rotate around the object.

On the orthographical view of the second channel, a yellow

grid is created representing the cellular grid of the combat
simulated area. The red agent’s positions received from the
CellAgent sub-model are rendered by red circles and the blue
agent’s positions represented by a blue circle (see Figure 7).
The orthographical view is capable of zooming in and out and
the cellular grid can be removed for a better view.

5.2. RTV Sub-model Implementation
Figure 8 illustrate the hierarchy of the 3D real-time visu-

alization sub-model, which was implemented in Visual C++,
and it consists of three main components:

1. The RTV Listener, which receives the data of the red
agents from the CellAgent sub-model.

2. The RTV Visualization, which is responsible of creating
of the blue agents and the display of the 3D visualiza-
tion scene.

3. The RTV Sender, which sends the data of the blue
agents to the CellAgent sub-model.

The RTV Listener is a separate thread, which is spawned for
receiving the red agent’s data. First, the RTV Listener is re-
sponsible for receiving the dimensions of the cell-space from
the CellAgent sub-model in order to start the RTV Visual-
ization to render the 3D scene. Then, the RTV Listener re-
ceives the red agent’s flag position. Finally, the RTV Listener
receives the red agents grid positions updates and their per-
sonalities in real-time from the CellAgent sub-model.

The RTV Visualization is the main part of the 3D real-time
visualization sub-model. The RTV Visualization is responsi-
ble of the setting up the 3d visualization of 3D real-time vi-
sualization sub-model.



Figure 8. 3D Real-time Visualization Hierarchy

The RTV Visualization is composed of six main modules:

1. 3D Scene Generator, which is responsible for the set
up and synchronization of the 3D scene, drawing of dif-
ferent 3D objects (terrain, tanks, buildings, etc), defin-
ing and controlling different environments effects (day-
time, clouds, sun, etc), and drawing the other modules.
The 3D Scene Generator also removes the dead agents
from the 3D scene.

2. 3D Red Agent Generator, which creates a 3D object for
the red agents. It positions the red agents based on the
received coordinates from the RTV Listener. The 3D
Red Agent Generator sets and updates the red agents
with their personalities which are received from the
RTV Listener.

3. 2D Map Draw, which consists of:

• DrawGrid, which receives the cellular space di-
mensions from the RTV Listener and draws it on
the 2D Map channel.

• DrawCircle, which gets the agent’s positions and
draws the red and blue circles according to the
agent’s type at the corresponding coordinates.

• DrawFlag, which draws a box for each flag ac-
cording to its color at the corresponding coordi-
nates.

4. 3D Blue Agent Generator, which creates the blue
agents (which include the 3D object model, personali-
ties, and position). The 3D Blue Agent Generator sends
the position of the blue agents to the RTV Sender.

5. 3D Blue Agent Updater, which calculates different per-
sonalities for the blue agents according to the received
data for the red agents. Then it sends the personalities
of the blue agents to the RTV Sender.

6. Blue Flag Generator, which creates a 3D object for
the blue agent’s flag at the user defined position, then it
sends the position to the RTV Sender.

The RTV Sender is a separate thread, which is spawned for
sending the blue agents data. First, The RTV Sender sends the
grid position of the blue agent’s flag to the CellAgent sub-
model running on the CD++ workstation. After that, it sends
the blue agents grid positions and their personality updates to
the CellAgent sub-model while the model develops.

Finally, the 3D real-time visualization sub-model is capa-
ble of deploying different Openflight 3D terrain models and
different cellular areas (dimensions and initial values) without
changing the code of the visualization. Some videos are gen-
erated using the proposed model that can be found in [29,30]



6. CONCLUSIONS
We present a 3D real-time visual Cellular Agent model

(VCELL) for collaborative of Cell Agent simulation with 3D
visualization in real-time of different battlefield combat sce-
narios. This work is done using a 3D real-time visual en-
gine and the CD++ simulator running Cell-DEVS models.
The VCELL model is not only used for prediction, but also
to improve the understanding and learning process in a land
combat. VCELL is designed to help analysts and trainers to
get maximum gain by interactively simulating the scenarios,
validating the results and training the soldiers in an effec-
tive environment. This work incorporates two sub-models: a
Cell-DEVS agent simulation and a 3D visualization agent.
The two sub-models provide model reusability and interop-
erability allowing for integration or replacement of any of
them. The Visual Cell-DEVS Agent of a land combat is a new
way of enhancing the randomization movement problem of
movement algorithms in agent-based simulation by using the
3D visualization agent which gets the real position of agents
in the combat. The Cell-DEVS agent simulation reduces the
time development taken to create or modify tactical scenario
in the 3D visualization simulation by using Cell-DEVS for-
malism which has an interpreter to write simple rules. These
rules are transformed to be visualized in the 3D visualiza-
tion by using 3D scenario generation. To implement the Cell-
DEVS communication interface, we modified the CD++ sim-
ulator core engine. Our model is implemented using robust
software tools to make the real-time visual Cell-DEVS agent
model more flexible and more scalable.

REFERENCES
[1] A. Ilachinski. Irreducible semi-autonomous adaptive

combat (ISAAC): An artificial life approach to land
combat. Technical Report CRM 97-61, Center for Naval
Analyses, Alexandria, VA, Aug. 1997.

[2] A. Ilachinski. Irreducible semi-autonomous adaptive
combat (ISAAC): An artificial life approach to land
combat. Military Operations Research, 5:29–46, 2000.

[3] M. K. Lauren. Modeling combat using fractals and the
satistics of scaling ssystems. Military Operations Re-
search, 5(3):47–58, 2000.

[4] G. A. Cowan, D. Pines, and D. Meltzer. Complexity
: Metaphors, Models, and Reality. Addison-Wesley,
1994.

[5] S. Kauffman. At Home in the Universe: The Search for
Laws of Self-Organization and Complexity. Oxford Uni-
versity Press, 1995.

[6] C. G. Langton. Artificial Life: An Overview. MIT Press,
1995.

[7] K. Mainzer. Thinking in Complexity: the computational
dynamics of matter, mind, and mankind. Springer, 2004.

[8] A. Ilachinski. Enhanced Isaac Neural Simulation
Toolkit (EINSTein), an Artificial-Life Laboratory for Ex-
ploring Self-Organized Emergence in Land Combat.
Center for Naval Analyses, Beta-Test Userś Guide CIM
610.10., 1999.

[9] G. White. The mathematical agent a complex adaptive
system representation in bactowars. In First workshop
on complex adaptive systems for defence, 2004.

[10] M. K. Lauren and R. T. Stephen. Map-aware non-
uniform automata - a new zealand approach to scenario
modelling. Battlefield Technology, 5(1):27–31, 2002.

[11] M. Barlow and A. Easton. Crocadile: An open, exten-
sible agent-based distillation engine. Information & Se-
curity, 8(1):17–51, 2002.

[12] A. W. Gill. Improvement to the movement algorithm in
the mana agent-based distillation. Battlefield Technol-
ogy, 7(2):19–22, 2004.

[13] Ang Yang, Hussein A. Abbass, and Ruhul Sarker.
Wisdom-ii: A network centric model for warfare. In
Knowledge-Based Intelligent Information and Engi-
neering Systems, pages 173–173. Springer Berlin / Hei-
delberg, 2005.

[14] A. W. Gill and D. Grieger. Validation of agent based
distillation movement algorithms. Technical report, De-
fence Science and Technology Organization, Australia,
2003. DSTO-TN-0476.

[15] Gabriel A. Wainer and Norbert Giambiasi. Timed
Cell-DEVS: modelling and simulation of cell spaces.
Springer-Verlag, 2001.

[16] Dion Grieger. Comparison of two alternative movement
algorithms for agent based distillations. Technical Note
DSTO-TN-0777, Defence Science and Technology Or-
ganisation Edinburgh (Australia) Land Operations Div,
Aug. 2007.

[17] Ang Yang, H.A. Abbass, and R. Sarker. Characterizing
warfare in red teaming. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 36(2):268
–285, 2006.

[18] F. W Lanchester. Aircraft in Warfare: The Dawn of the
Fourth arm. Constable and Company Limited, London,
1916.



[19] D. S. Alberts and T. J. Czerwinski. Complexity, Global
Politics, and National Security, chapter 9, pages 99–
111. National Defense University, Washington, D.C.,
1997.

[20] R. A. Brooks and L. Steels. The Artificial Life Route
to Artificial Intelligence: Building Embodied, Situated
Agents, chapter 2, pages 25–81. Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1995.

[21] Bernard P. Zeigler, Tag Gon Kim, and Herbert Prae-
hofer. Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Sys-
tems. Academic Press, 2000.

[22] S. Wolfram. Theory and applications of cellular au-
tomata(Advances Series on Complex Systems), Volume
1. World Scientific, 1986.

[23] Gabriel A. Wainer. CD++: a toolkit to define discrete-
event models. Software, Practice and Experience,
32(3):1261–1306, November 2002.

[24] Mark Griffiths. The educational benefits of videogames.
Education and Health, 20(3):47 – 51, 2002.

[25] Training Circular 25-20. A Leader’s Guide To After-
Action Reviews. Department of the Army, Washington,
DC., September 1993.

[26] Committee on Modeling, Simulation, and Games. The
Rise of Games and High Performance Computing for
Modeling and Simulation. The National Academies
Press, 2010.

[27] Marc Prensky. Digital Game-Based Learning. Paragon
House, 2007.

[28] PRESAGIS. Vega prime, March 2011.
http://www.presagis.com/products_
services/products/ms/visualization/
vega_prime/.

[29] http://www.youtube.com/watch?v=
4qUBRrFIYKA.

[30] http://www.youtube.com/watch?v=
hgN4iXkkXfg.


